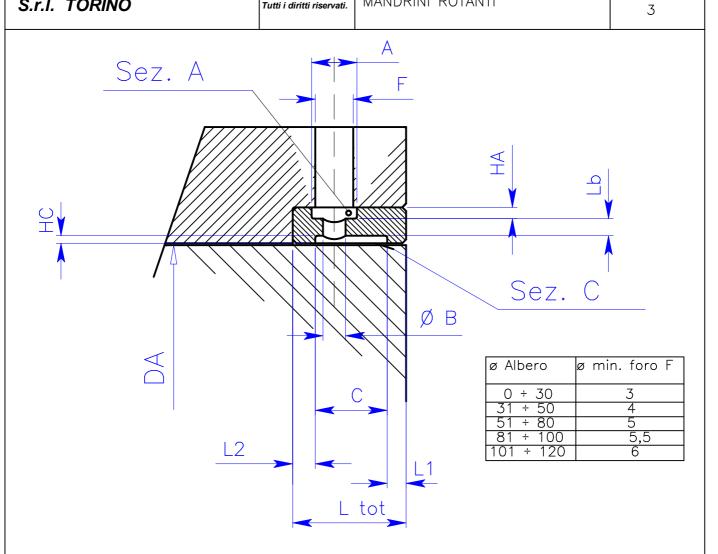


Il sistema si basa sul teorema di Venturi A parità di portata e pressione, la variazione di sezione di un condotto determina un aumento di velocità del flusso: Vf*Sf = Va*Sa = Vb*Sb = Vc*Sc = Vu*Su

I fori B di piccolo diametro, invece, si comportano come nei sistemi idrostatici: Si chiamano "Capillari o "Resistenze Hanno il compito di rendere difficile il ritorno dell'aria garantendo una pressione nella camera.

2

NOTE:


Il circuito dellaria di tenuta è formato da:

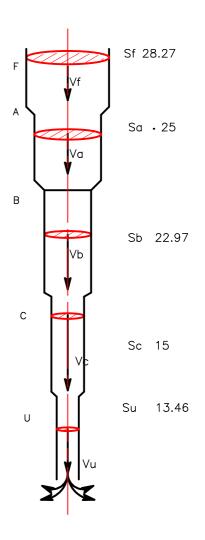
- A)
 Foro F che mette in comunicazione la boccola di tenuta con l'attacco d'adduzione dell'aria posto sul corpo del mandrino.
- B)
 Boccola di bronzo (mat. Bronzo 85.5.5.) suddivisa in:
 Camera di distribuzione A
 Fori di distribuzione B
 Camera di tenuta C

Nell'esecuzione di tale circuito occorre tenere presenti le seguenti indicazioni:

Il foro d'adduzione F deve avere la massima sezione possibile, compatibilmente con gli ingombri a disposizione. Se possibile, esso dovrebbe avere la sezione costante lungo tutta la sua lunghezza; evitare in ogni caso allargamenti di sezione in direzione della boccola. Ogni boccola deve essere alimentata da un foro indipendente.

- Non alimentare mai due boccole di tenuta con lo stesso foro F.
 Dimensionare la camera di distribuzione A in modo da avere la
 stessa sezione di passaggio del foro F.
 Fare in modo, se possibile, di avere le due dimensioni (larghezza/ altezza) simili tra loro.
- 2) Eseguire i fori B di $\varnothing 1,5$ (max.2) e la lunghezza del foro Lb pari a $2\div 3$ mm, in numero tale che la sezione complessiva sia circa il 90% della sezione di passaggio della camera A.
- 3)
 Evitare che il foro F di adduzione sia in direzione di uno dei fori B.
- 4) Eseguire la camera di tenuta C di larghezza $2 \div 5$ mm e profondità tale che la sezione di passaggio dell'aria sia circa il 60% della sezione complessiva dei fori B.
- 5) La lunghezza L1 dovrà essere pari al $4 \div 5\%$ del diametro dell'albero. La lunghezza L2 sarà 1,5 di L1.
- 6)
 La luce tra lalbero e la boccola devono creare una sezione media non superiore alla sezione dellarea C.
- 7)
 Prevedere sempre un foro filettato posto in prossimità della boccola (può anche essere lultimo tratto del foro F)
 che consenta il monitoraggio della pressione nella camera di distribuzione A.
 In tale punto si deve leggere con un manometro la pressione 0,5÷1 bar.
- 8)
 E preferibile fissare la boccola con viti, nel caso non fosse possibile fissare la boccola con LOCTITE 640.
- 9)La lavorazione del diametro interno della boccola è preferibile eseguirlo a boccola montata sulla flangia anteriore.
- 10)
 Non dimenticare di verificare che la luce radiale di tenuta (albero boccola) calcolata, sia sufficiente nel caso di dilatazioni termiche, ad impedire il bloccaggio del mandrino stesso.

Dimensi	ioni in mm			
DE	Diametro esterno della boccola min.	(Ha+Ac+2)*2+DA		
DA	Diametro nominale interno della boccola	xxx		
DBmax	Diametro max interno della boccola	Decidere in base alle		
DBmin	Diametro min interno della boccola	esigenze.		
		Garantire che i giochi		
DAmax	Diametro max albero	permettano le dilatazioni termiche albero—boccola.		
DBmin	Diametro min albero	terrinerie dibero boccord.		
F	Diametro del foro utile	Vedere tabella sopra		
А	Larghezza della gola di ingresso	xxx		
В	Diametro dei fori B (surrogato dei capillari)	1.5 (max 2)		
С	Larghezza della gola in uscita	(Min 2 max 5)		
L1	Labbro in uscita	0.04÷0.05 *DA		
L2	Labbro in etntrata min.	1.5 * L1		
НА	Profondità gola A	xxx		
НС	Profondità gola C	×××		
Ltot	Larghezza minima della boccola	L1+C+L2		
Lb	Lunghezza dei fori B	(Min 2) verificare risultati		


CRIVELLIN PROGETTAZIONI S.r.I. TORINO

©Copyright CRIVELLIN PROGETTAZIONI S.r.I. Tutti i diritti riservati.

CALCOLO TENUTE AD ARIA MANDRINI ROTANTI Pag.

	-	
Input		
Ø Interno boccola	DA	100
Ø Esterno boccola	DE	116
Ø foro F	F	6
Largh. A	Α	10
Profondità gola A	НА	2,5
Largh. C (2 +5)	С	5
Profondità gola C	НС	3
Ø foro B	В	1,50
Albero	DAmin	99.97
	DAmax	100
Boccola	DBmin	100.02
	DBmax	100.10

Vf*Sf = Vu*Su Posto a1 Vf Vu = Vf*Sf/Su 1*28.27/13.46 = 2.1 La velocità di uscita dell'aria è il doppio di quella in entrata.

Output	Var.	Formula	esempio numerico	risultati	
Area foro B	BB	(B/2) ↑2 * 3.14	(1.5/2) †2 * 3.14	1,77	
N° fori B	n	Intero (AA/ BB+0.5)	int (25/1.77+0.5)	13	
Labbro L1	L1	0.04*DA	0.04*100	4	
Labbro L2	L2	1.5* L1	1.5*4	6	
Area foro F	FF	(F/2) ↑2 * 3.14	(6/2) ↑2 * 3.14	28,27	sez F
Area gola	AA	A*HA	10 *2.5	25	sez A <f< td=""></f<>
Somma area fori B	BT	BB * n	1.77 * 13	22,97	sez B <a< td=""></a<>
Area gola C	CC	C*HC	5*3	15	sez C <b< td=""></b<>
Lunghezza fori B	Lb	(DE-DA)/2 -HA-HC)	(116-100)/2-2.5-3	2,50	
Lunghezza tot boc.	Ltot	L1+C+L2	4+5+6	15	
Area uscita aria	Umin	((DBmin/2)†2* 3.14)- ((DAmax/2)†2*3.14)	((100.02/2)†2* 3.14)- ((100/2)†2*3.14)	3,14	
	Umax	((DBmax/2)†2* 3.14)— ((DAmin/2)†2*3.14)	((100.1/2)†2* 3.14)- ((99.97/2)†2*3.14)	20,43	
	Umedia	(Umin+Umax)/2	(3.14+20.43)/2	13,36	sez U <c< td=""></c<>

CRIVELLIN PROGETTAZIONI S.r.I. TORINO

©Copyright CRIVELLIN PROGETTAZIONI S.r.I. Tutti i diritti riservati.

CALCOLO TENUTE AD ARIA MANDRINI ROTANTI

Pag.

5

CALCOLO BOC	COL	E TENU	ITA ARIA dimension	ni in mm	
Input					
Ø Interno boccola	DA	100,00	ø Albero	ø min. foro F	
Ø Esterno boccola	DE	116,00	0 ÷ 30	3	
Ø foro F	F	6,00	31 ÷ 50	4	
Largh. A	Α	10,00	51 ÷ 80	5	l
Profondità gola A	НА	2,50	81 ÷ 100	5,5	
Largh. C (2÷5)	С	5,00	101 ÷ 120	6	l
Profondità gola C	HC	3,00	Scostamento superiore	albero	ı
Ø foro B	В	1,50	Scostamento inferiore	albero	
			Scostamento superiore	boccola	
			Scostamento inferiore	boccola	
Output					
Area foro B		1,77			
N° fori B		13,00			
Labbro	L1	4			
Labro	L2	6			
Area foro F (100%)	[mm²]	_			
Area gola A	[mm²]		Minore della preced.		
Somm area fori B	[mm²]		Minore della preced.		
Area gola C	[111111]	15,00	Minore della preced.		
Lunghezza fori B (> 2)	Lb		>2		
Lunghezza tot boccola	Ltot	2,50	> 2		
Lungnezza tot boccola	LIOI	15,00			
	min	99,9700			
ø est. Albero	max	100,0000			
	min	100,0000			
ø int. Boccola	max	100,0200			
	HUA	100,1000			
	min	3,14			
Area uscita aria [mm²]	max	20,43			
	media	13,36	Questo valore deve ess	ere	
			minore di "Area gola c"		